

July 2, 2018

Letty Schamp, P.E. City Engineer City of Upper Arlington 4100 Roberts Rd. Columbus. OH 43228

RE: Results of the Proposed Swenson's Cemetery Road Traffic Access Study

Ms. Schamp:

We have completed the traffic access study for the proposed Swenson's restaurant located in the City of Hilliard. The methods and results of this analysis are summarized below. A Memorandum of Understanding, approved by the City of Hilliard, can be found in **Attachment A**.

Background

The proposed site is located on the northwest corner of Cemetery Road and the J.W. Reason Elementary School Access (J.W. Reason Drive). Figure 1 shows the location of the proposed site in Hilliard.

Figure 1—Location of the Proposed Site in Hilliard (Yellow Shading)¹

¹ Intersections shown as blue circles are considered "study intersections" and were included in the analysis of this study. The intersection of the proposed full access drive with J.W. Reason Drive was not analyzed since there is no background traffic on J.W. Reason Drive during the PM peak.

The site is proposed to include a Swenson's Drive-In restaurant approximately 1,800 SF in size. There is one proposed full-access point along the existing driveway for the J.W. Reason Elementary School. It is proposed that this drive will be gated off during the end of school day peak from 3:00 - 4:00 PM. The J.W. Reason Drive intersection with Cemetery Road is signalized. Another full-access drive is proposed along Cemetery Road. It is anticipated that Cemetery Road access will be restricted to right-in, right-out movements, per the request of the developer. However, it has been analyzed as a full-access drive to produce more conservative results. The site plan for the proposed development can be found in **Attachment A**.

Projected Traffic

For analysis, the Opening Year of the development is 2019 and the Design or Horizon Year is 2029. AM and PM peak turning movement counts were collected at the intersection of Cemetery Road and J.W. Reason Drive from 7:00-9:00 AM and from 2:30-6:00 PM on August 30, 2017 while school was in session. A linear, annual growth rate of 0.5%, provided by the Mid-Ohio Regional Planning Commission (MORPC), was applied to the count data to project Opening and Horizon Year Background traffic volumes. Volume calculations were developed to show both proposed site drives open as well as only the Cemetery Road drive open. Count data and MORPC correspondence can be seen in **Attachment B**.

Trips for the proposed site development were generated using standard Institute of Transportation Engineers (ITE) practices and the *Trip Generation Manual*, 10th edition, data via the OTISS program². Land Use Code (*LUC*) 933 – Fast Food Restaurant without Drive-Through Window was used to generate trips for the proposed development. Standard ITE pass-by rates were applied. Internal capture does not apply to this proposed development. **Table 1** shows the trip generation of the proposed development. The full trip generation analysis can be found in **Attachment C**.

Table 1 – Proposed Site Trip Generation Summary

Land Use	Size		f Adjacent Traffic		eak of cator³	Wee	kday
		Entry	Exit	Entry	Exit	Entry	Exit
933 - Fast-Food Restaurant without Drive-Through Window	1,800 SF	26	25	44	44	312	311
Internal	Gross	0	0	0	0	0	0
Pass-By	Floor Area	11	11	19	19	0	0
Non-Pass-By		15	14	25	25	312	311

Non-pass-by site traffic was distributed to/from the site assuming a general distribution of 50% to/from the east and west. Site traffic was added to the Background traffic to produce Build traffic for the proposed development. The full volume calculations, including site drive traffic assignment, can be found in **Attachment D**.

² Online Traffic Impact Study Software developed by ITE and Transoft Solutions.

³ PM Peak of Generator trip generation is included per a City of Hilliard request. It was not, however, utilized in the analysis.

Analysis

The HCM module of Synchro Version 10 software was used to analyze capacity at all study intersections shown in Figure 1. A minimum Level of Service (LOS) of D for the overall intersection and for each individual movement was considered acceptable at each intersection. If an intersection fell below these criteria, mitigation strategies were developed to bring each movement back to an acceptable LOS. Video review of the Cemetery Road and J.W. Reason Drive intersection was conducted and it was determined that default lane utilization factors would be applicable for use in the analysis. Peak hour factors (PHF) determined from count data were utilized in the analysis.

A queuing analysis was performed at all study intersections using the SimTraffic module of Synchro Version 10 software. If any queue lengths exceeded available storage space or were unreasonably long, mitigation strategies were developed to reduce the queue lengths. Single trip entries into a private driveway on the south side of Cemetery Road were evaluated in SimTraffic as an unsignalized stop-controlled access to model the impact the proposed Swenson's traffic has on utilization of the existing two-way left turn lane (TWLTL) and the impact on westbound through vehicles during the PM Peak. Existing queueing on Cemetery Road was documented during the PM peak hour in the westbound lanes along the site frontage.

Turn lane length calculations were conducted at the Cemetery Road and J.W. Reason Drive intersection using methodologies from the ODOT Location & Design Manual.

Results & Conclusions

Results of capacity analysis can be seen in Table 2 below. Acceptable LOS is obtained in the Horizon Year PM Build condition for both the Cemetery Road & J.W. Reason Drive intersection and the Cemetery Road & Cemetery Road Site Access Drive intersection. The full capacity analysis can be found in **Attachment E**.

Table 2 - Summary of Horizon Year Capacity Analysis (LOS/delay)

Intersection	Approach	PM No Build	PM Build
	Eastbound	A/1.9	A/2.1
Cemetery Road &	Westbound	A/5.1	A/5.7
J.W. Reason Drive	Southbound	C/27.6	C/28.9
	Total	A/4.2	A/4.9
	Eastbound		A/0.0
Cemetery Road &	Westbound		A/0.0
Cemetery Road Site Access Drive	Southbound		D/30.9
	Total ⁴		D/30.9

⁴ The total for unsignalized intersections is represented by the worst approach.

Results of the queuing analysis for the proposed site drives can be seen in Table 3 below. The average and 95th percentile queue length for each approach is shown. If an approach has multiple lanes, the longest queue on that leg is shown in the table. The full queuing analysis, as well as a schematic showing these queues, can be seen in **Attachment E**.

Table 3 - Summary of Horizon Year Queuing Analysis

Intersection	Approach	Movement	PM I	Build
inter section	Approach	Movement	AVG	95 th
	Eastbound	Through	42'	99'
C D	Eastbound	Left	12'	38'
Cemetery Road & J.W. Reason Drive	Westbound	Through	64'	135'
j.w. Reason Drive	westbound	Through-Right	37'	95'
	Southbound	Left/Right	33'	66'
Cemetery Road &	Eastbound	Left	2'	15'
Cemetery Road Site Access Drive	Southbound	Left/Right	7'	28'

As seen in Tables 2 and 3, capacity and queuing analysis results are acceptable for both study intersections.

Per the approved MOU, single-trip entries and exits were evaluated for the single-family homes on the south side of Cemetery Road to determine the impact of the TWLTL in this area. Synchro SimTraffic software does not have the capability to show TWLTL interaction, so westbound entering vehicles into the single-family homes were shown turning from the southernmost westbound through lane. These vehicles could make the turn safely with almost no delay. Additionally, the eastbound left turn queues at both the Cemetery Drive and J.W. Reason Drive were no more than 1-2 cars long, as shown in Table 3. It is anticipated that TWLTL lane conflicts will be minimal and likely no different than Cemetery Road in its current condition. Observation of the SimTraffic simulation showed that nearly every time a westbound vehicle was turning left into a single-family home on the south side of Cemetery Road, the TWLTL was not occupied. The SimTraffic simulations utilized for this analysis can be provided if requested.

Video review of the Cemetery Road and J.W. Reason Drive intersection was conducted from 3:30 - 4:00 PM to determine the level of pedestrian and bus traffic as well as the impact the proposed Swenson's will have on school departure⁵. As previously noted, the Swenson's access drive onto J.W. Reason Drive will be closed from 3:00 - 4:00 PM on days when school is in session. Early afternoon is typically a slower time of day for restaurants as it is between typical lunch and dinner hours. It is expected that trips generated by the Swenson's restaurant during this time will be significantly less than the ITE trip generation during the PM Peak hour. The majority of pedestrians were observed crossing Cemetery Road at the signalized intersection. Few pedestrians were observed walking westbound in the sidewalk

4

⁵ Capacity and queuing analysis for a single site access along Cemetery Road was not conducted as per the request of the developer. This was requested since Swenson's trip generation during this time is expected to be much less than the PM Peak hour. It is anticipated that the Cemetery Road Access Drive would have similar results as what is displayed in the analysis for two access drives.

along Cemetery Road and the proposed site frontage. Heavy pedestrian and bus traffic only occurred for a period of about 5 minutes between 3:35pm and 3:40pm.

Westbound queuing was observed during the PM Peak hour to determine how the queuing at the signalized intersection west of the proposed site (Cemetery Road & Berry Leaf Lane/Westbrook Drive) would affect the proposed site. During this observation, westbound queuing extended to the J.W. Reason Drive only a few times. Traffic along Cemetery Road appeared to be free flowing. The free-flowing nature of Cemetery Road during the PM peak Hour, along with higher volumes, would make a left turn out of the Cemetery Road Access Drive difficult during the peak. It is expected that Swenson's customers will be aware of peak hour traffic along Cemetery Road and will choose to exit at the J.W. Reason signal to travel eastbound. Additionally, if the Cemetery Drive is right-in, right-out restricted (as requested by the developer), it is anticipated that customers will only violate the restriction during offpeak hours when Cemetery Road volumes are much lower. Most customers will choose to make protected left turns out of the site using the I.W. Reason Drive. From 3:00 - 4:00 PM, when the access drive on J.W. Reason Drive is closed, traffic along the site frontage of Cemetery Road will be traveling at 20 MPH due to the school zone speed limit. Lowered speeds coupled with added actuation at the J.W. Reason Drive signal creating gaps in traffic makes exiting the Cemetery Road Access Drive much easier. Peak hour video utilized for this observational analysis can be provided if requested.

Turn lane lengths were calculated for the eastbound left turning movements at both the Cemetery Road Access Drive and the J.W. Reason Drive using ODOT methodology. Based on the results, dedicated left turn lanes would need to be 125' for the Cemetery Road Access Drive and 165' for the J.W. Reason Drive, both inclusive of a 50' diverging taper. The full turn lane length calculations can be found in **Attachment E**.

Hilliard's Access Management Plan was reviewed with respect to the proposed access points for the Swenson's development. Based on this plan, the proposed Cemetery Road Access Drive will be classified as a Commercial, Low Volume Driveway and Cemetery Road would be classified as a Category F roadway. Since Cemetery Road is a 35 MPH roadway, minimum access spacing is 250'. This distance will not be met by the proposed Cemetery Road Access Drive as the access drive will be approximately 175' from the J.W. Reason Drive. However, redevelopment of the subject property will reduce the number of access points along Cemetery Road from three to one. The reduction in access points will lead to lesser conflict points, a potential reduction in crashes, and safer ingress/egress. Additionally, the table shown on Page 64 of the Hilliard Thoroughfare Plan shows that minimum access spacing for a Category F, Low-Volume Driveway is based on stopping sight distance and intersection sight distance. Cemetery Road in this area is relatively flat with no curvature, so issues with sight distance are not expected.

Recommendations

Based on the results of the capacity analysis, queuing analysis, SimTraffic observations, and video observations, it is recommended that the proposed Swenson's Development be

permitted as shown in the site plan in **Attachment A**. It is recommended that the Cemetery Road Access Drive be restricted to right-in, right-out movements by signage only. A "porkchop" right-in, right-out driveway design would increase the driveway footprint and have a negative impact to pedestrian traffic. If customers choose to violate the signed restriction, the capacity and queuing analysis shows acceptable results for left turns in and out of this access.

School departure will not be impacted by the Swenson's development. Swenson's traffic will not be utilizing the J.W. Reason Drive from the hours of 3:00 - 4:00 PM. Additionally, it is expected that trips generated by the Swenson's during this time will be minimal. A reduced speed limit of 20 MPH during school departure coupled with added actuation at the J.W. Reason Drive signal creating gaps in traffic will also assist with ingress and egress for Swenson's customers that need to utilize the Cemetery Drive during the closure of the J.W. Reason Drive.

It is recommended that the TWLTL along the site frontage be maintained as a TWLTL in lieu of dedicated left turn lanes. This will enable westbound vehicles entering the single-family homes to the south to utilize the TWLTL, which the analysis shows will be unoccupied most of the time.

Although the proposed Cemetery Road Access Drive does not meet Hilliard's driveway spacing requirements, the reduction in access points with the redevelopment of the proposed site will lead to less conflict points and increased safety in the area. The proposed Swenson's development is a relatively low trip generator for a restaurant use. There are other uses that could be developed on the proposed site, such as office or retail, that would have a much bigger impact to the transportation network, especially uses that produce AM Peak traffic.

If I can help in any way, do not hesitate to contact me at gbalsamo@cmtran.com or 614.656.2429 anytime.

GINA MICHELLE BALSAMO E-81775

Gina Balsamo, PE

Project Engineer Carpenter Marty Transportation

Attachment A MOU & Site Plan

MEMORANDUM OF UNDERSTANDING

BETWEEN:

The City of Hilliard & Carpenter Marty Transportation

REGARDING:

Scope for a Traffic Impact Study pertaining to the proposed Swenson's Restaurant along Cemetery Road in Hilliard, Ohio

I. Purpose

The purpose of this Memorandum of Understanding (MOU) is to establish a mutually agreeable scope for a Traffic Impact Study (TIS) covering the proposed Swenson's restaurant along Cemetery Road in Hilliard, Ohio. **Figure 1** shows the location of the proposed development and proposed access points.

The intersections under study are the following:

- 1. Cemetery Road & J.W. Reason Elementary School Access
- 2. J.W. Reason Elementary School Access & Proposed Full Access
- 3. Cemetery Road & Proposed Full Access.

II. Proposed Development

The site is proposed to include a Swenson's Drive-In restaurant approximately 1,800 SF in size. There is one proposed full-access point along the existing driveway for the J.W. Reason Elementary School. It is proposed that this drive will be gated off during the end of school day peak. The elementary school driveway intersection with Cemetery Road is signalized. Another full-access drive is proposed along Cemetery Road. Two scenarios will be evaluated in this traffic study. The first will include both proposed access points. The second will omit the proposed full-access point along the existing driveway for the J.W. Reason Elementary School to reflect operations when this drive is gated off. The preliminary site plan can be found in **Attachment A**.

III. Volume Development

For analysis, the Opening Year of the development is 2019 and the Design or Horizon Year is 2029. AM and PM peak turning movement counts were collected at the intersection of Cemetery Road and the J.W. Reason Elementary school drive from 7-9 AM and from 2:30-6 PM on August 30, 2017 while school was in session. A linear, annual growth rate of 0.5%, provided by the Mid-Ohio Regional Planning Commission (MORPC), will be applied to the count data to project Opening and Horizon Year Background traffic volumes. As previously mentioned, volume calculations will be developed for two site drive scenarios. Additionally, analysis will be conducted for the end of school day peak and the traditional PM Peak. No AM Peak analysis will be conducted as Swenson's does not open until 11:00am. The count data and MORPC correspondence can be found in **Attachment B**.

Trips for the proposed site development were generated using standard Institute of Transportation Engineers (ITE) practices and the *Trip Generation Manual*, 10th edition, data via the OTISS program¹. Land Use Code (*LUC*) 933 – Fast Food Restaurant without Drive-Through Window was used to generate trips for the proposed development. Standard ITE pass-by rates were applied. Internal capture does not apply to this proposed development. **Table 1** shows the trip generation of the proposed development. The full trip generation analysis can be found in **Attachment C**.

Table 1 – Proposed Site Trip Generation Summary

Land Use	Size		f Adjacent Traffic		eak of rator	Wee	kday
		Entry	Exit	Entry	Exit	Entry	Exit
933 - Fast-Food Restaurant without Drive-Through Window	1,800 SF	26	25	44	44	312	311
Internal	Gross	0	0	0	0	0	0
Pass-By	Floor Area	11	11	19	19	0	0
Non-Pass-By		15	14	25	25	312	311

¹ Online Traffic Impact Study Software developed by ITE and Transoft Solutions.

Please use 50%/50% directional distribution for non-pass by trips

All new trips will be distributed to/from the site assuming a general distribution of 61% to/from the east and 39% to/from the west. This general distribution was determined based on count data, knowledge of the surrounding area, and engineering judgment. As previously mentioned, distributions will be developed for two site drive scenarios. Site traffic will be added to the Background (No Build) traffic to produce Build traffic.

IV. Analysis

The HCM module of Synchro Version 10 software will be used to analyze capacity at all study intersections shown in **Figure 1**. A minimum Level of Service (LOS) of D for the overall intersection and for each individual movement will be considered acceptable at each intersection. If an intersection falls below these criteria, mitigation strategies will be developed to bring each movement back to an acceptable LOS. Lane utilization percentages will be verified and reflected in the analysis. Peak hour factors (PHF) determined from count data will be utilized in the analysis.

A queuing analysis will be performed at all study intersections using the SimTraffic module of Synchro Version 10 software. If any queue lengths exceed available storage space or are unreasonably long, mitigation strategies will be developed to reduce the queue lengths. Single trip entries into each private driveway on the south side of Cemetery Road will be evaluated in SimTraffic as an unsignalized stop-controlled access to model the impact the proposed Swenson's traffic has on utilization of the existing two-way left turn lane (TWLTL) and the impact on westbound through vehicles during the PM Peak. Existing queueing on Cemetery Road will be documented during the PM peak hour in the westbound lanes along the site frontage. A discussion of the impact that the proposed development will have on utilization of the TWLTL for entry of south side properties during PM peak will be provided. Schematics of anticipated left turn lane storage for all accesses utilizing the TWLTL along the proposed site frontage will be provided.

Turn lane length calculations will be conducted at the Cemetery Road and J.W. Reason Elementary School Drive intersection using methodologies from the ODOT Location & Design Manual.

A general analysis of the impacts to properties on the south side of Cemetery Road will be conducted. This will include any diagrams or discussions related to safety, sight distance, capacity, queuing, etc. Recommendations will be provided based on results.

Discussion and documentation will be provided that analyzes the existing school driveway operations during normal school arrival and dismissal. Queuing, pedestrian activity, and safety will all be evaluated, in general, to determine if Swenson's traffic will influence school traffic. Since school will be out of session during the time this study is being conducted,

Miovision video documentation of the intersection collected in August 2017 will be utilized for this task.

As previously mentioned in this MOU, the traffic study will include analysis and results for access scenarios with and without the full-access point along the existing driveway for the J.W. Reason Elementary School.

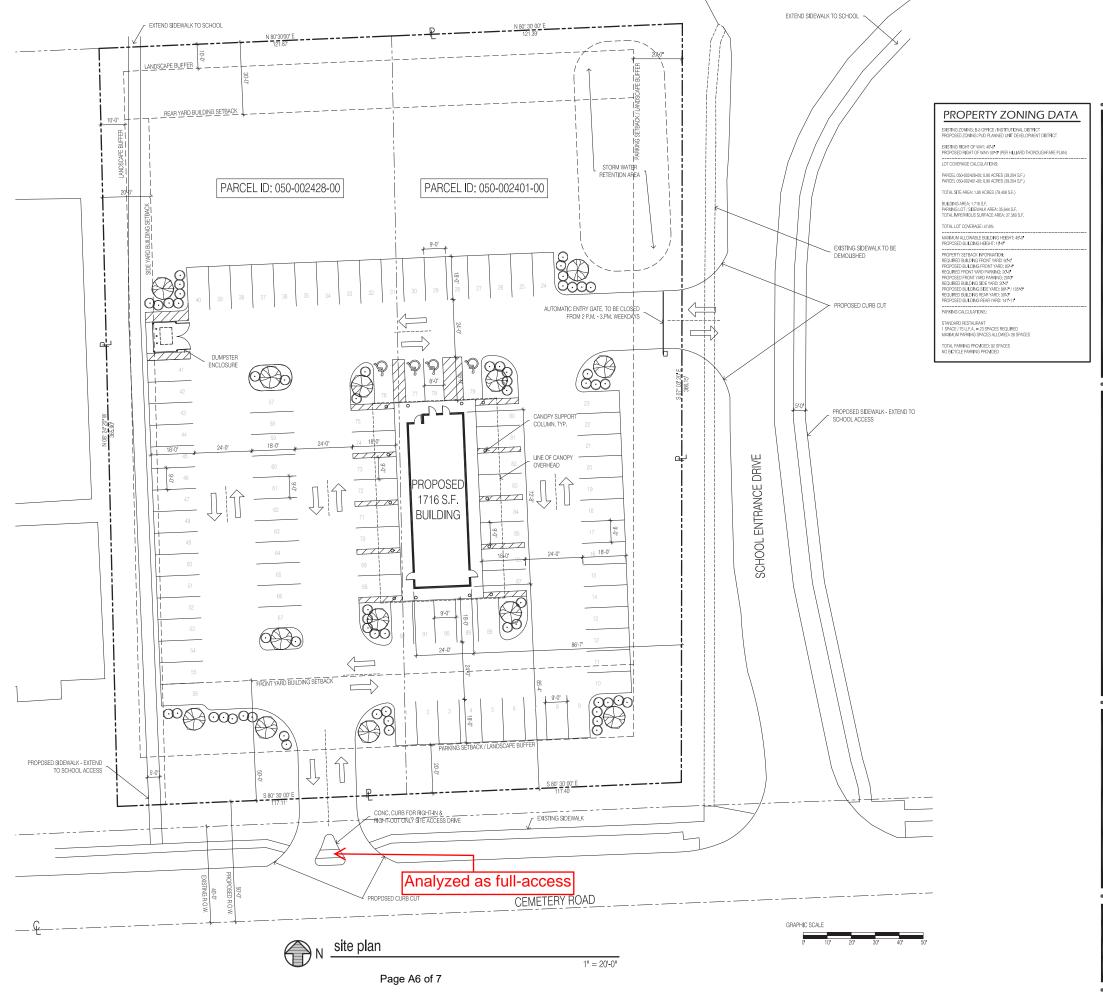
Discussion of the proposed access points with respect to Hilliard's Access Management Plan (Technical Appendix of Hilliard's Thoroughfare Plan), specifically the "Driveway Locations and Spacing" and "Access Management Standards" sections of the plan, will be provided.

V. Report

A report will be produced that includes tables, figures, appendices, etc. This report will document the analysis, results, and recommendations for the public roadway system surrounding the development. These recommendations will be divided into both Build and No Build improvements required to mitigate the anticipated traffic.

Please signify your concurrence with this Memorandum of Understanding by signing below. If you have any questions or comments, please contact Drew Laurent at 614-656-2421 or dlaurent@cmtran.com.

Sincerely,


Gina Balsamo, PE Project Engineer

Carpenter Marty Transportation Inc.

City of Hilliard (or their Representative)

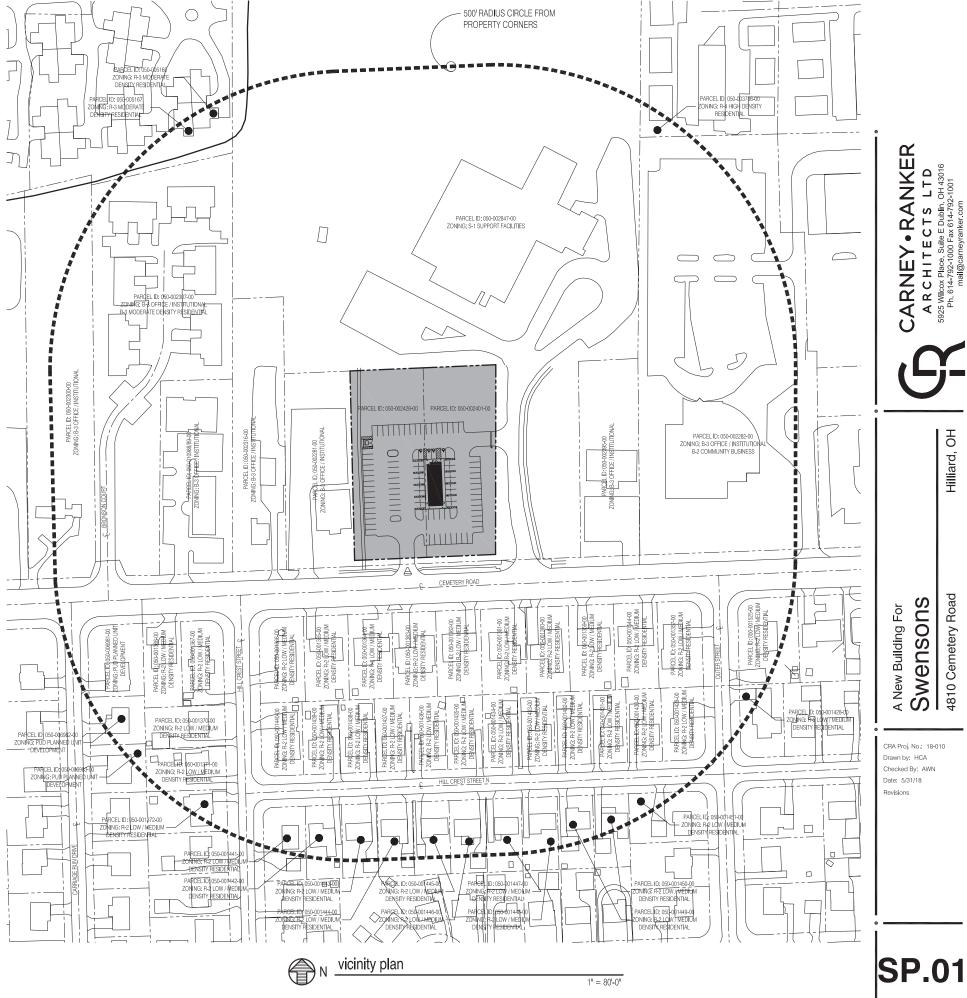
John Date: 6.22-2018

approved as noted

CARNEY • RANKER

A R C H I T E C T S L T D

5925 Wilcox Place, Suite E Dublin, 0H 43016
Ph. 614-792-1001 E M 614-792-1001
mail@carney/ranker.com


Hilliard, OH

Swensons
4810 Cemetery Road

A New Building For

CRA Proj. No.: 18-010 Drawn by: HCA Checked By: AWN Date: 5/31/18 Revisions

SP.01

Page A7 of 7

SP.01

Hilliard, OH

Swensons
4810 Cemetery Road

Attachment B
Count Data & MORPC
Corespondence

Cemetery and JW Reason Site Drive - TMC

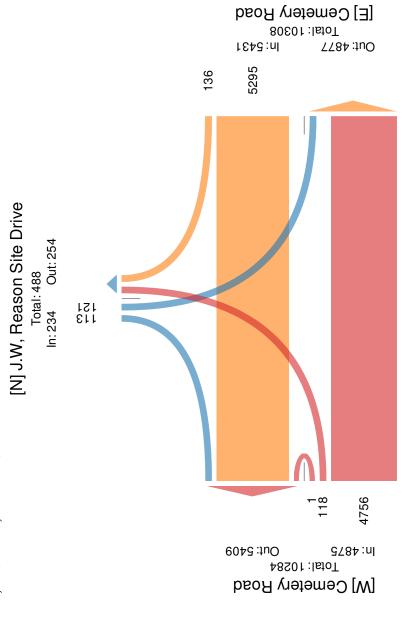
Wed Aug 30, 2017 Full Length (7AM-9AM, 2:30PM-6PM)

All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses) All Movements

ID: 441621, Location: 40.031296, -83.144775, Site Code: TRA17039

				-									
	Cemetery Road	ad		<u> </u>	Ce metery Road			<u> </u>	J.W, Reason Site Drive	Site Drive			
Direction	Eastbound				Westbound			<i>S</i>	Southbound				
Time	Г	L	D	Арр	T	ĸ	D	Арр	Г	В	D	App Int	_
2017-08-30 7:00AM	4	238	0	242	107	4	0	111	9	1	0	7	360
7:15AM	9	272	0	278	120	3	0	123	9	0	0	9	407
7:30AM	14	274	0	288	122	12	0	134	9	1	0	7	429
7:45AM	12	277	0	289	123	12	0	135	9	2	0	8	432
Hourly Total	36	1061	0	1097	472	31	0	503	24	4	0	28	1628
8:00AM	7	265	0	272	130	-	0	131	1	2	0	3	406
8:15AM	1	223	0	224	151	3	0	154	4	1	0	2	383
MA08:8	8	223	0	231	132	15	0	147	4	3	0	7	385
8:45AM	22	245	0	267	164	23	0	187	25	32	0	57	511
Hourly Total	38	926	0	994	577	42	0	619	34	38	0	72	1685
2:30PM		142	0	143	266	3	0	269	1	1	0	2	414
2:45PM	4	228	0	232	259	4	0	263	4	1	0	2	200
Hourly Total	S	370	0	375	525	7	0	532	2	2	0	7	914
3:00PM	7	229	0	236	302	4	0	306	0	1	0	1	543
3:15PM	8	173	0	181	286	8	0	294	2	1	0	3	478
3:30PM	က	184	0	187	283	13	0	296	17	28	0	45	528
3:45PM	0	200	0	200	320	0	0	320	2	80	0	13	533
Hourly Total	18	786	0	804	1191	25	0	1216	24	38	0	62	2082
4:00PM	1	207	0	208	299	1	0	300	2	9	0	8	516
4:15PM	0	195	0	195	327	4	0	331	9	2	0	8	534
4:30PM	1	214	0	215	349	3	0	352	3	3	0	9	573
4:45PM	2	199	0	201	329	2	0	331	4	2	0	9	538
Hourly Total	4	815	0	819	1304	10	0	1314	15	13	0	28	2161
5:00PM	0	229	0	229	315	6	0	324	9	3	0	6	292
5:15PM		204	1	207	318	0	0	318	2	2	0	4	529
5:30PM		167	0	169	327	8	0	335	2	1	0	3	202
5:45PM	13	168	0	181	266	4	0	270	6	12	0	21	472
Hourly Total	17	768	1	786	1226	21	0	1247	19	18	0	37	2070
Total	118	4756	1 4	4875	5295	136	0	5431	121	113	0	234	10540
% Approach	2.4%	92.6%	%0	-	97.5%	2.5%	%0	1	51.7%	48.3%	%0	-	-
% Total	1.1%	45.1%	0% 46	46.3%	50.2%	1.3%	3 %0	51.5%	1.1%	1.1%	%0	2.2%	1
Lights	105	4620	1 4	4726	5179	114	0	5293	111	88	0	199	10218
% Lights	80.68	97.1%	100% 96	%6.96	87.8%	83.8%	3 %0	97.5%	91.7%	77.9%	%0	82.0%	%6.96
Articulated Trucks and Single-Unit Trucks	1	92	0	93	82	0	0	82	0	1	0	1	176
% Articulated Trucks and Single-Unit Trucks	0.8%	1.9%	%0	1.9%	1.5%	%0	%0	1.5%	%0	%6.0	%0	0.4%	1.7%
Buses		44		26	34	22	0	26	10	24	0	34	146
% Buses	10.2%	%6.0	%0	1.1%	%9.0	16.2%	%0	1.0%	8.3%	21.2%	%0	14.5%	1.4%

Page B2 of 9


*L: Left, R: Right, T: Thru, U: U-Turn

Cemetery and JW Reason Site Drive - TMC

Full Length (7AM-9AM, 2:30PM-6PM)

All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses) All Movements

ID: 441621, Location: 40.031296, -83.144775, Site Code: TRA17039

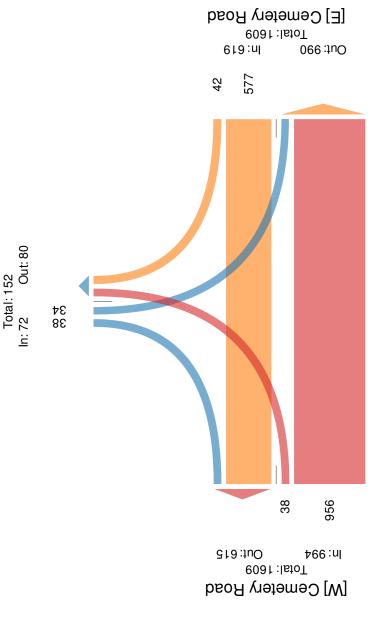
Provided by: Carpenter Marty (CM) Transportation Inc. 6612 Singletree Drive, Columbus, OH, 43229, US

Cemetery and JW Reason Site Drive - TMC

Wed Aug 30, 2017 AM Peak (8AM - 9AM)

All Classe's (Lights, Articulated Trucks and Single-Unit Trucks, Buses) All Movements ID: 441621, Location: 40.031296, -83.144775, Site Code: TRA17039

Direction Eastbound T T App T Restbound Time 2017-08-30 8:00 AM 7 265 0 272 130 1 0 L Fine 2017-08-30 8:00 AM 7 265 0 272 130 1 0 14 1 R:15 AM 8:15 AM 1 223 0 224 151 3 0 14 4 R:30 AM 8:30 AM 22 223 0 224 151 3 0 14 4 4 R:45 AM 22 245 0 24 154 2 147 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 6 184 6 6 6 6 6 6 6 6 6 6 6 6 6 6			_
	Southbound	pur	
7 265 0 272 130 1 0 131 1 8 1 224 151 3 0 154 4 8 223 0 231 132 15 0 147 4 122 245 0 267 164 23 0 187 4 138 956 0 964 577 42 0 619 34 13.8% 96.2% 0% 59.0% 34.2% 6.8% 0% 47.2% 12.3% 56.7% 0% 59.0% 34.2% 6.8% 0% 36.7% 2.0% 10.43 0.90 0.91	U App	R U	App Int
1 223 0 224 151 3 0 154 4 1 2 23 0 231 132 15 0 147 4 1 2 2 13 15 0 147 4 4 1 2 2 164 23 0 187 25 1 3 5 0 954 57 4 6 7 7 1 3 6 6 6 86 6 86 96 87 87 87 1 6 6 6 6 86 6 86 96 96 97 <t< td=""><td></td><td>1 2 0 3</td><td>3 406</td></t<>		1 2 0 3	3 406
8 223 0 231 132 132 15 0 147 4 122 245 0 267 164 23 0 187 25 3.8% 96.2% 0% 994 577 42 0 619 34.7% 2.3% 56.7% 0% 59.0% 34.2% 2.5% 0% 36.7% 2.0% 0.432 0.902 - 0.914 0.880 0.457 - 0.840 0.340 34 913 0 94.8 66.7% 0 92.9% 82.4%	0 154	1 0	5 383
22 245 0 267 164 23 0 187 25 388 956 0 994 577 42 0 619 34.2% 3.88% 96.2% 0% 36.7% 0% 6.8% 0% 47.2% 2.38% 56.7% 0% 34.2% 2.5% 0% 36.7% 2.0% 0.432 0.902 - 0.914 0.880 0.457 - 0.340 0.340 34 913 0 94.7 24 0 92.9% 82.4% 0 82.9% 82.4%	0 147	3 0	7 385
38 956 0 994 577 42 0 619 34 3.8% 96.2% 0% - 93.2% 6.8% 0% 47.2% 2.3% 56.7% 0% 59.0% 34.2% 2.5% 0% 36.7% 2.0% 0.432 0.902 - 0.914 0.880 0.457 - 0.828 0.340 34 913 0 94.7 54.7 28 0 575 28 89.5% 95.5% 0% 95.3% 94.8% 66.7% 0% 92.9% 82.4%	0 187	5 32 0 57	511
3.8% 96.2% 0% - 93.2% 6.8% 0% - 47.2% 2.3% 56.7% 0% 59.0% 34.2% 2.5% 0% 36.7% 2.0% 0.432 0.902 - 0.914 0.880 0.457 - 0.828 0.340 34 913 0 947 547 28 0 575 28 89.5% 95.5% 0% 95.3% 94.8% 66.7% 0% 92.9% 82.4%	619 0	38 0 72	72 1685
2.3% 56.7% 0% 59.0% 34.2% 2.5% 0% 36.7% 2.0% 0.432 0.902 - 0.914 0.880 0.457 - 0.828 0.340 34 913 0 947 547 28 0 575 28 89.5% 95.5% 0% 95.3% 94.8% 66.7% 0% 92.9% 82.4%	- %0	. 52.8% 0%	<u> </u>
0.432 0.902 - 0.914 0.880 0.457 - 0.828 0.340 34 913 0 947 547 28 0 575 28 89.5% 95.5% 0% 95.3% 94.8% 66.7% 0% 92.9% 82.4%	% 36.7 %0	% 2.3% 0% 4.3%	%
34 913 0 947 547 28 0 575 28 89.5% 95.5% 0% 95.3% 94.8% 66.7% 0% 92.9% 82.4%	- 0.828	10 0.297 - 0.316	1 6 0.824
89.5% 95.5% 0% 95.3% 94.8% 66.7% 0% 92.9% 82.4%	0 575	.8 26 0 54	4 1576
	0% 92.9%	% 68.4% 0% 75.0%	% 93.5%
Articulated Trucks and Single-Unit Trucks 0 32 0 32 24 0 0 24 0	0 24	0 0	99 29
% Articulated Trucks and Single-Unit Trucks 0% 3.3% 0% 3.2% 4.2% 0% 0% 0% 3.9% 0%	3.9 %	%0 %0 %0 %	3.3%
Buses 4 11 0 15 6 14 0 20 6	0 20	12 0	18 53
\$\bigode{\mathcal{G}}\$\$ \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0% 3.2%	% 31.6% 0% 25.0%	3.1%


Cemetery and JW Reason Site Drive - TMC

Wed Aug 30, 2017 AM Peak (8AM - 9AM)

All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses) All Movements

ID: 441621, Location: 40.031296, -83.144775, Site Code: TRA17039

[N] J.W, Reason Site Drive

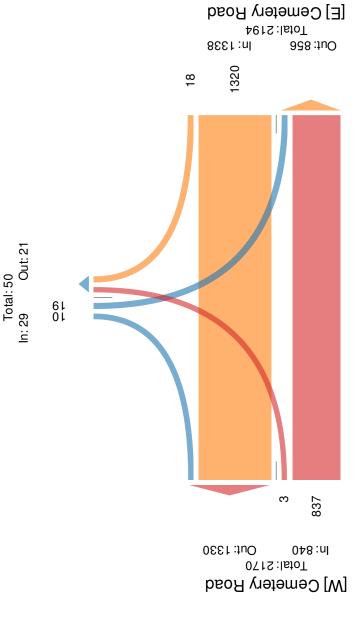
Provided by: Carpenter Marty (CM) Transportation Inc. 6612 Singletree Drive, Columbus, OH, 43229, US

Cemetery and JW Reason Site Drive - TMC

Wed Aug 30, 2017 PM Peak (4:15PM - 5:15PM) - Overall Peak Hour

All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses) All Movements ID: 441621, Location: 40.031296, -83.144775, Site Code: TRA17039

Leg	Cemetery Road	Road			Cemetery Road	ad		J	J.W, Reason Site Drive	Site Drive			
Direction	Eastbound				Westbound			<u> </u>	Southbound				
Time	Г	T	U	App	T	R	n	App	Γ	R	n	App Int	ıt
2017-08-30 4:15PM	0	195	0	195	327	4	0	331	9	2	0	8	534
4:30PM	1	214	0	215	349	3	0	352	33	က	0	9	573
4:45PM	1 2	199	0	201	329	2	0	331	4	2	0	9	538
5:00PM	0]	229	0	229	315	6	0	324	9	3	0	6	562
Total	3	837	0	840	1320	18	0	1338	19	10	0	29	2207
% Approach	0.4%	%9.66	%0	'	98.7%	1.3%	%0	-	65.5%	34.5%	%0	•	•
% Total	0.1%	37.9%	%0	38.1%	29.8%	0.8%	%0	%9.09	%6.0	0.5%	%0	1.3 %	•
#Hd	7 0.375	0.914		0.917	0.946	0.500		0.950	0.792	0.833		908.0	0.963
Lights	3	818	0	821	1307	18	0	1325	19	10	0	29	2175
% Lights	100%	97.7%	%0	97.7%	%0.66	100%	%0	%0.66	100%	100%	%0	100%	89.86
Articulated Trucks and Single-Unit Trucks	0	13	0	13	8	0	0	8	0	0	0	0	21
% Articulated Trucks and Single-Unit Trucks	%0	1.6%	%0	1.5%	%9.0	%0	%0	%9.0	%0	%0	%0	% 0	1.0%
Buses	0	9	0	9	5	0	0	2	0	0	0	0	11
e e Buses	%0	0.7%	%0	0.7%	0.4%	%0	%0	0.4 %	%0	%0	%0	% 0	0.5%
அ*L: Left, R: Right, T: Thru, U: U-Turn g ம													


Cemetery and JW Reason Site Drive - TMC

PM Peak (4:15PM - 5:15PM) - Overall Peak Hour

All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses) All Movements

ID: 441621, Location: 40.031296, -83.144775, Site Code: TRA17039

[N] J.W, Reason Site Drive

From: Gina Balsamo
To: Drew Laurent

Subject: FW: Growth Rate Request for Cemetery Road at JW Reason

Date: Monday, June 11, 2018 11:15:36 AM

Attachments: <u>image001.png</u>

Gina Balsamo, P.E.

Carpenter Marty Transportation 614.656.2429

From: Hwashik Jang [mailto:hjang@morpc.org]

Sent: Monday, June 11, 2018 11:09 AM **To:** Gina Balsamo <gbalsamo@cmtran.com>

Cc: Nick Gill <ngill@morpc.org>; Zhuojun Jiang <zjiang@morpc.org> **Subject:** RE: Growth Rate Request for Cemetery Road at JW Reason

Gina,

We have completed processing growth rates on Cemetery Rd at JW Reason Dr. Please use an overall **0.5%** linear annual growth rate for the study intersection.

Note: This is planning level analysis based on MORPC regional travel demand model.

If you have any other questions, please let me know.

Thanks,

Hwashik

Hwashik Jang | <u>hjang@morpc.org</u> | MORPC Tel 614.233.4145 | Fax 614.233.4245

From: Gina Balsamo [mailto:gbalsamo@cmtran.com]

Sent: Friday, June 1, 2018 3:18 PM

To: Hwashik Jang <hjang@morpc.org; Nick Gill <ngill@morpc.org; Zhuojun Jiang

<zjiang@morpc.org>

Subject: Growth Rate Request for Cemetery Road at JW Reason

Good Afternoon,

We would like to request a growth rate for Cemetery Road at JW Reason Elementary School. Count

data at the intersection is attached. We will be conducting a TIS for a proposed Swenson's at the NW corner of this intersection. Please see attached site plan. The opening year will be 2019 with a 10 year horizon. The study will be reviewed by the City of Hilliard.

Please let me know if you have questions.

Thanks,

Gina Balsamo, P.E.
Traffic Engineer
CARPENTER
MARTY transportation

6612 Singletree Drive | Columbus, Ohio 43229 614.656.2429 | www.cmtran.com

Attachment C Trip Generation

Project Information	
Project Name:	Swensons Cemetery Road
No:	
Date:	6/4/2018
City:	
State/Province:	
Zip/Postal Code:	
Country:	
Client Name:	
Analyst's Name:	
Edition:	ITE-TGM 10th Edition

Land Use	Size	PM Peak of G	enerator	PM Peak of Adjacent	Street Traffic	Week	day
		Entry	Exit	Entry	Exit	Entry	Exit
933 - Fast-Food Restaurant without Drive-							
Through Window (General							
Urban/Suburban)	1.8 1000 Sq. Ft. GFA	44	44	26	25	312	311
Reduction		0	0	0	0	0	0
Internal		0	0	0	0	0	0
Pass-by		19	19	11	11	0	0
Non-pass-by		25	25	15	14	312	311
Total		44	44	26	25	312	311
Total Reduction		0	0	0	0	0	0
Total Internal		0	0	0	0	0	0
Total Pass-by		19	19	11	11	0	0
Total Non-pass-by		25	25	15	14	312	311

PERIOD SETTING

Analysis Name: PM Peak of Adjacent Street

Traffic

Project Name: Swensons Cemetery Road No:

Date: 6/4/2018 City:

State/Province: Zip/Postal Code: Country: Client Name:

Analyst's Name: Edition: ITE-TGM 10th Edition

Independent Land Use Size **Time Period** Method Entry Exit **Total** Variable 933 - Fast-Food 1000 Sq. Ft. GFA 1.8⁽⁰⁾ Weekday, Peak Average 26 25 51 Restaurant without Hour of Adjacent 28.34 51% 49% Drive-Through Window Street Traffic. One Hour (General Urban/Suburban) Between 4 and 6

(0) indicates size out of range.

TRAFFIC REDUCTIONS

Land UseEntry ReductionAdjusted EntryExit ReductionAdjusted Exit933 - Fast-Food Restaurant without Drive-Through Window0 %25

EXTERNAL TRIPS

Land UseExternal TripsPass-by%Pass-by TripsNon-pass-by Trips933 - Fast-Food Restaurant without Drive-Through Window51432229

ITE DEVIATION DETAILS

Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Landuse No deviations from ITE.

Methods No deviations from ITE.

External Trips 933 - Fast-Food Restaurant without Drive-Through Window (General Urban/Suburban)

ITE does not recommend a particular pass-by% for this case.

SUMMARY

Total Entering	26
Total Exiting	25
Total Entering Reduction	0
Total Exiting Reduction	0
Total Entering Internal Capture Reduction	0
Total Exiting Internal Capture Reduction	0
Total Entering Pass-by Reduction	11
Total Exiting Pass-by Reduction	11
Total Entering Non-Pass-by Trips	15
Total Exiting Non-Pass-by Trips	14

PERIOD SETTING

PM Peak of Generator Analysis Name:

Project Name: Swensons Cemetery Road No: 6/4/2018 Date: City:

State/Province: Zip/Postal Code: Country: **Client Name:**

ITE-TGM 10th Edition Analyst's Name: Edition:

Independent **Time Period Land Use** Size Method Exit Total Entry Variable 933 - Fast-Food 1000 Sq. Ft. GFA 1.8 Weekday, PM Average 44 44 88 Restaurant without Peak Hour of 48.7 50% 50% Drive-Through Window Generator (General Urban/Suburban)

TRAFFIC REDUCTIONS

Entry Land Use Adjusted Entry Exit Reduction Adjusted Exit Reduction 933 - Fast-Food Restaurant without Drive-0 % 44 0 % 44

Through Window

EXTERNAL TRIPS

Land Use	External Trips	Pass-by%	Pass-by Trips	Non-pass-by Trips
933 - Fast-Food Restaurant without Drive- Through Window	88	43	38	50

ITE DEVIATION DETAILS

Weekday, PM Peak Hour of Generator

No deviations from ITE. Landuse

Methods No deviations from ITE.

933 - Fast-Food Restaurant without Drive-Through Window (General Urban/Suburban) **External Trips**

ITE does not recommend a particular pass-by% for this case.

SUMMARY

Total Entering	44
Total Exiting	44
Total Entering Reduction	0
Total Exiting Reduction	0
Total Entering Internal Capture Reduction	0
Total Exiting Internal Capture Reduction	0
Total Entering Pass-by Reduction	19
Total Exiting Pass-by Reduction	19
Total Entering Non-Pass-by Trips	25
Total Exiting Non-Pass-by Trips	25

PERIOD SETTING

Analysis Name : Weekday

Project Name :Swensons Cemetery RoadNo :Date:6/4/2018City:

State/Province: Zip/Postal Code: Country: Client Name:

Analyst's Name: Edition: ITE-TGM 10th Edition

Independent **Time Period Land Use** Size Method Exit Entry Total Variable 312⁽⁰⁾ 933 - Fast-Food 311⁽⁰⁾ 1000 Sq. Ft. GFA 1.8 Weekday Average 623⁽⁰⁾ Restaurant without 346.23 50% 50%

Drive-Through Window

(General Urban/Suburban)

(0) indicates small sample size, use carefully.

TRAFFIC REDUCTIONS

Land Use Entry Adjusted Entry Exit Reduction Adjusted Exit

933 - Fast-Food Restaurant without Drive-

Through Window

0 % 312 0 % 311

EXTERNAL TRIPS

Land Use External Trips Pass-by% Pass-by Trips Non-pass-by Trips

933 - Fast-Food Restaurant without DriveThrough Window

External Trips Pass-by% 0 623

0 623

ITE DEVIATION DETAILS

Weekday

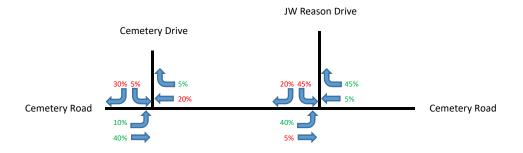
Landuse No deviations from ITE.

Methods No deviations from ITE.

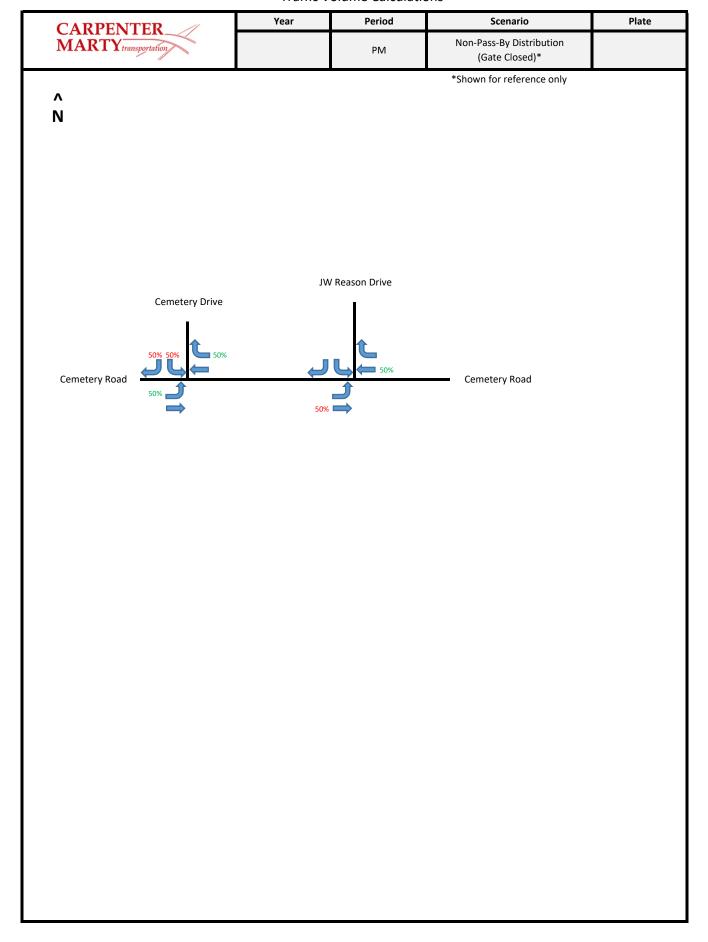
External Trips 933 - Fast-Food Restaurant without Drive-Through Window (General Urban/Suburban)

ITE does not recommend a particular pass-by% for this case.

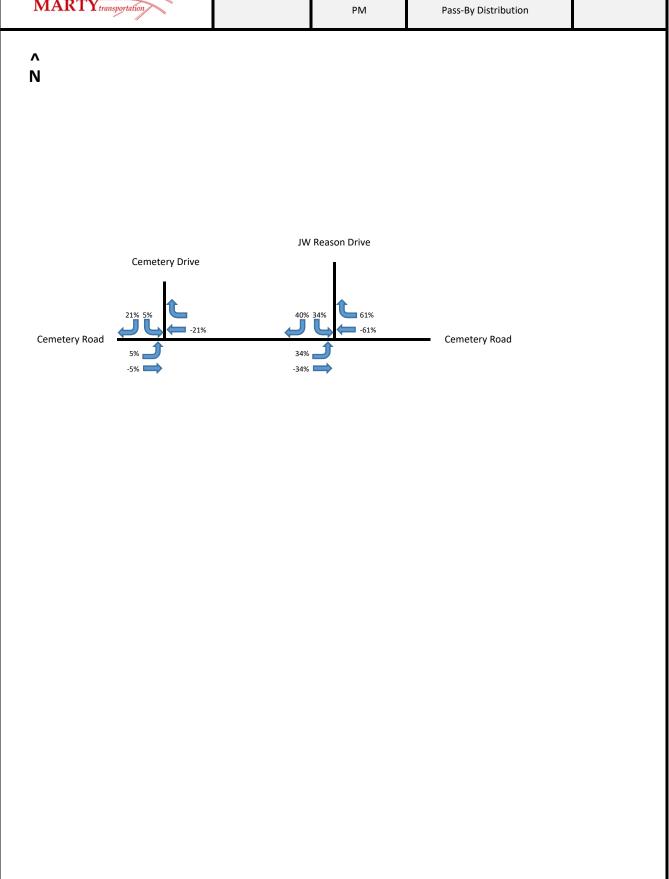
SUMMARY

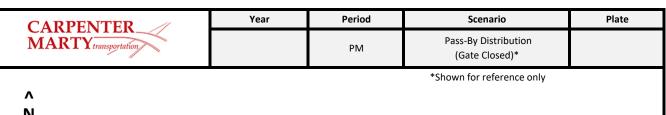

Total Entering	312
Total Exiting	311
Total Entering Reduction	0
Total Exiting Reduction	0
Total Entering Internal Capture Reduction	0
Total Exiting Internal Capture Reduction	0
Total Entering Pass-by Reduction	0
Total Exiting Pass-by Reduction	0
Total Entering Non-Pass-by Trips	312
Total Exiting Non-Pass-by Trips	311

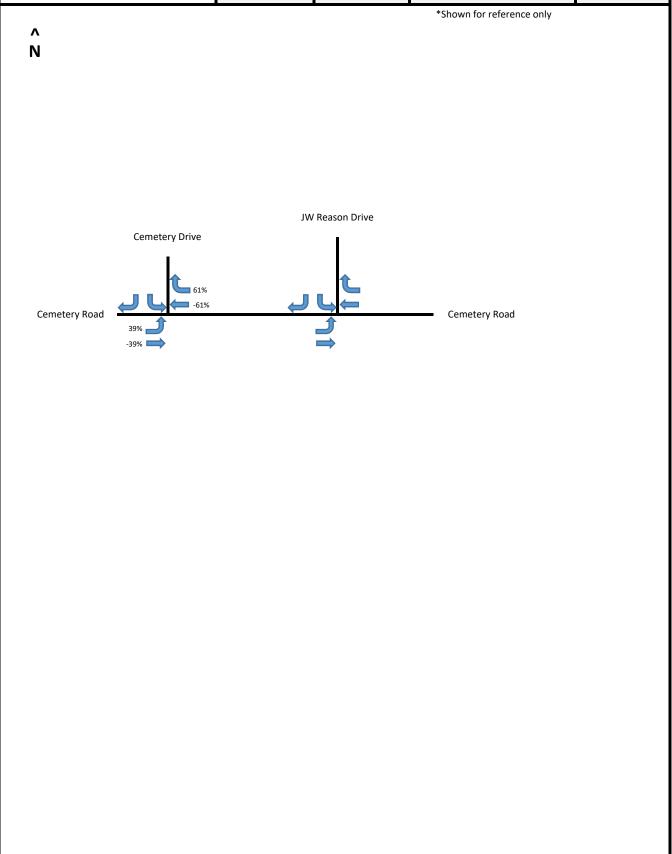
Attachment D Volume Calculations

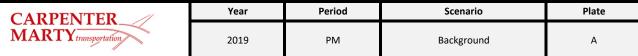


CARPENTER //	Year	Period	Scenario	Plate
MARTY		PM	Non-Pass-By Distribution	

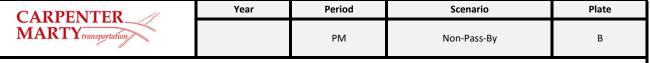

Λ N

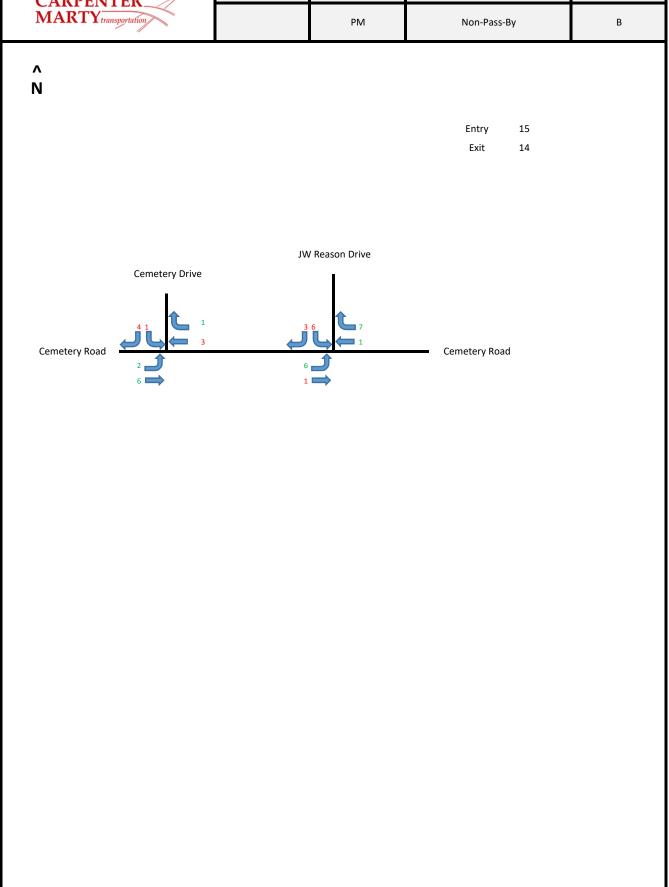


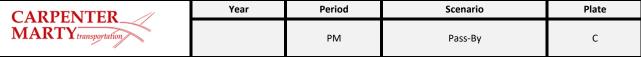

The majority of eastbound, entering site traffic was placed at the J.W. Reason Drive to produce more conservative queuing results at the signal. It is understood that this may not represent true driver behavior as more drivers coming from the west may choose to enter at the Cemetery Road Drive.

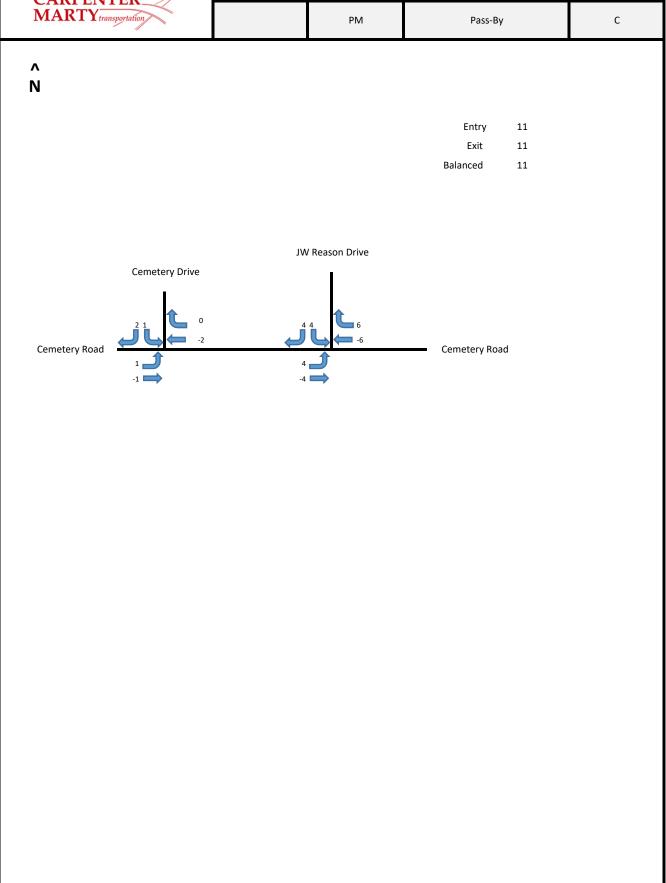


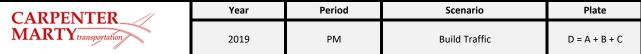
CARPENTER //	Year	Period	Scenario	Plate
MARTY transportation		PM	Pass-By Distribution	

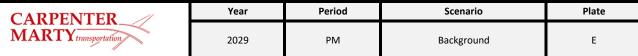


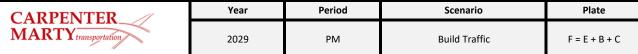


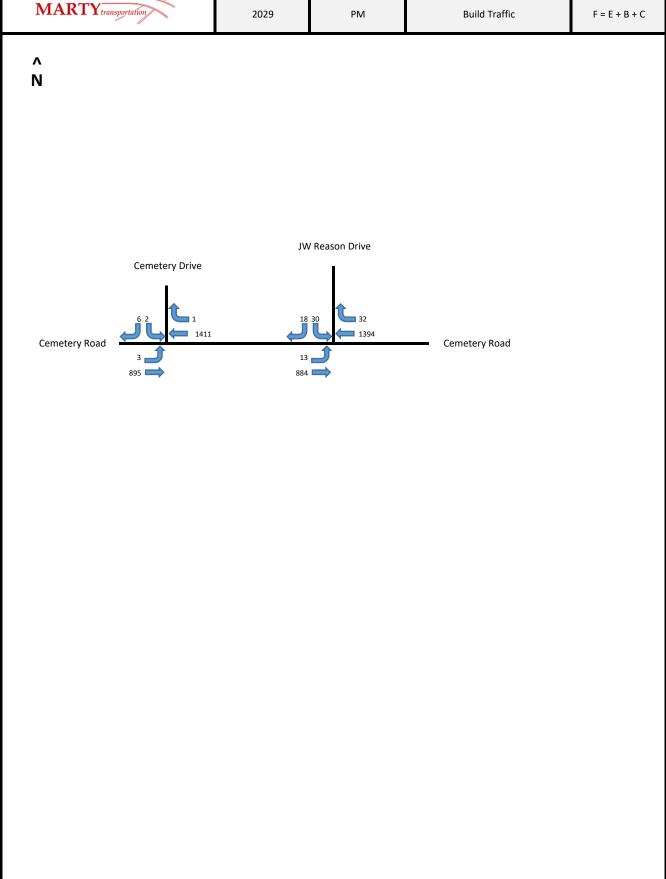





N 0.50% **Growth Rate** JW Reason Drive Cemetery Drive 1343 Cemetery Road Cemetery Road 845







N JW Reason Drive Cemetery Drive Cemetery Road Cemetery Road 842 853 💻

Ν 0.50% **Growth Rate** JW Reason Drive Cemetery Drive 1410 Cemetery Road Cemetery Road 887

Attachment E Capacity, Queuing, & Turn Lane Length Analysis

		→	←	•	\	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	^	↑ ↑		W	
Traffic Volume (veh/h)	3	887	1399	19	20	11
Future Volume (veh/h)	3	887	1399	19	20	11
Number	5	2	6	16	7	14
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1863	1900
Adj Flow Rate, veh/h	3	964	1473	20	25	14
Adj No. of Lanes	1	2	1473	0	0	0
Peak Hour Factor	0.92	0.92	0.95	0.95	0.81	0.81
	0.92	0.92	0.95	0.95	0.81	0.81
Percent Heavy Veh, %						26
Cap, veh/h	311	2695	2359	32	46	
Arrive On Green	0.00	0.76	0.66	0.66	0.04	0.04
Sat Flow, veh/h	1774	3632	3668	49	1065	596
Grp Volume(v), veh/h	3	964	729	764	40	0
Grp Sat Flow(s), veh/h/ln	1774	1770	1770	1854	1704	0
Q Serve(g_s), s	0.0	4.1	11.0	11.0	1.1	0.0
Cycle Q Clear(g_c), s	0.0	4.1	11.0	11.0	1.1	0.0
Prop In Lane	1.00			0.03	0.62	0.35
Lane Grp Cap(c), veh/h	311	2695	1168	1223	74	0
V/C Ratio(X)	0.01	0.36	0.62	0.62	0.54	0.00
Avail Cap(c_a), veh/h	515	7021	3127	3276	720	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	3.8	1.8	4.5	4.5	21.6	0.0
Incr Delay (d2), s/veh	0.0	0.1	0.6	0.5	6.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	1.9	5.2	5.7	0.6	0.0
LnGrp Delay(d),s/veh	3.8	1.9	5.1	5.1	27.6	0.0
LnGrp LOS	3.6 A	1.9 A	3.1 A	3.1 A	27.0 C	0.0
	A			A		
Approach Vol, veh/h		967	1493		40	
Approach Delay, s/veh		1.9	5.1		27.6	
Approach LOS		А	А		С	
Timer	1	2	3	4	5	6
Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		39.6		6.5	4.7	34.9
Change Period (Y+Rc), s		4.5		4.5	4.7	4.5
Max Green Setting (Gmax), s		91.5		19.5	5.5	81.5
Max Q Clear Time (g_c+l1), s		6.1		3.1	2.0	13.0
Green Ext Time (p_c), s		9.1		0.1	0.0	17.4
Intersection Summary						
HCM 2010 Ctrl Delay			4.2			
HCM 2010 LOS			A			
			,,			
Notes						

HY PM Peak No Build Baseline Synchro 10 Report

	4	/	۶	+
Phase Number	2	4	5	6
Movement	EBTL	SBL	EBL	WBT
Lead/Lag			Lead	Lag
Lead-Lag Optimize			Yes	Yes
Recall Mode	None	None	None	None
Maximum Split (s)	96	24	10	86
Maximum Split (%)	80.0%	20.0%	8.3%	71.7%
Minimum Split (s)	22.5	22.5	9.5	22.5
Yellow Time (s)	3.5	3.5	3.5	3.5
All-Red Time (s)	1	1	1	1
Minimum Initial (s)	5	5	5	5
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	7	7		7
Flash Dont Walk (s)	11	11		11
Dual Entry	Yes	Yes	No	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	0	96	0	10
End Time (s)	96	0	10	96
Yield/Force Off (s)	91.5	115.5	5.5	91.5
Yield/Force Off 170(s)	80.5	104.5	5.5	80.5
Local Start Time (s)	110	86	110	0
Local Yield (s)	81.5	105.5	115.5	81.5
Local Yield 170(s)	70.5	94.5	115.5	70.5
Intersection Summary				
Cycle Length			120	
	C	omi Act I		
Control Type	5	emi Act-L		
Natural Cycle			70	
Splits and Phases: 3: Cer	netery Roa	nd & I\N/ E	ใคลรูกท N	rive
Spiits and mases. 3. Cel	netery INO	IU OL JVV F	Casun D	HVC
→ _{Ø2}				
96 s				
→				
Ø5 Ø6				

HY PM Peak No Build Baseline Synchro 10 Report

					,
•	-	—	•	-	4
EBL	EBT	WBT	WBR	SBL	SBR
13	884	1394	32	30	18
13	884	1394	32	30	18
5	2	6	16	7	14
0	0	0	0	0	0
1.00			1.00	1.00	1.00
	1.00	1.00			1.00
					1900
					22
					0
					0.81
					0.01
					36
					0.06
					623
					0
					0
					0.0
	4.4	12.1			0.0
	0/07	1110			0.37
					0
					0.00
					0
					1.00
					0.00
					0.0
0.1	0.1	0.6	0.6		0.0
0.0	0.0	0.0	0.0	0.0	0.0
0.1	2.0	5.9	6.2	1.0	0.0
4.3	2.0	5.7	5.7	28.9	0.0
Α	Α	А	Α	С	
	975	1501		60	
		5.7			
1		3	4		6
	2		4	5	6
	41.7		7.3	5.4	36.3
	4.5		4.5	4.5	4.5
	91.5		19.5	5.5	81.5
	6.4		3.7	2.1	14.2
	9.1		0.1	0.0	17.6
		4.0			
		А			
	13 13 13 5 0 1.00 1.00 1863 14 1 0.92 2 318 0.02 1774 14 1774 0.1 0.1 1.00 318 0.04 486 1.00 1.00 4.2 0.1 0.1 4.3 A	EBL EBT 13 884 13 884 13 884 5 2 0 0 1.00 1.00 1.00 1863 1863 14 961 1 2 0.92 0.92 2 2 318 2687 0.02 0.76 1774 3632 14 961 1774 1770 0.1 4.4 0.1 4.4 1.00 318 2687 0.04 0.36 486 6616 1.00 1.00 1.00 1.00 4.2 1.9 0.1 0.1 0.0 0.0 0.1 2.0 4.3 2.0 A A 975 2.1 A 1 2 2 41.7 4.5 91.5 6.4	EBL EBT WBT 13 884 1394 13 884 1394 5 2 6 0 0 0 1.00 1.00 1.00 1863 1863 1863 14 961 1467 1 2 2 0.92 0.95 2 2 2 2 318 2687 2297 0.02 0.76 0.65 1774 3632 3629 14 961 733 1774 1770 1770 0.1 4.4 12.1 1.00 1.44 12.1 1.00 318 2687 1149 0.04 0.36 0.64 486 6616 2946 1.00 1.00 1.00 1.00 1.00 1.00 4.2 1.9 5.1 0.1 0.1	EBL EBT WBT WBR 13 884 1394 32 13 884 1394 32 5 2 6 16 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1863 1863 1863 1900 14 961 1467 34 1 2 2 0 2 2 2 2 318 2687 2297 53 0.02 0.76 0.65 0.65 1774 3632 3629 82 14 961 733 768 1774 1770 1770 1848 0.1 4.4 12.1 12	EBL EBT WBT WBR SBL 13 884 1394 32 30 13 884 1394 32 30 5 2 6 16 7 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.863 1863 1863 1900 1863 14 961 1467 34 37 1 2 2 0 0 0.92 0.92 0.95 0.95 0.81 2 2 2 2 0 318 2687 2297 53 60 0.02 0.76 0.65

HY PM Peak Build Baseline Synchro 10 Report

	-	•	•
2	4	5	6
EBTL	SBL	EBL	WBT
		Lead	Lag
		Yes	Yes
None	None	None	None
96	24	10	86
80.0%	20.0%	8.3%	71.7%
22.5	22.5	9.5	22.5
3.5	3.5	3.5	3.5
1	1	1	1
5	5	5	5
3	3	3	3
3	3	3	3
0	0	0	0
0	0	0	0
7	7		7
11	11		11
Yes	Yes	No	Yes
Yes	Yes	Yes	Yes
0	96	0	10
96	0	10	96
91.5	115.5	5.5	91.5
80.5	104.5	5.5	80.5
110	86	110	0
81.5	105.5	115.5	81.5
70.5	94.5	115.5	70.5
		120	
C	Somi Act I		
3	BEIIII ACI-U		
		70	
metery Ros	ad & IW F	Reason D	rive
motory Not	14 K J VV I	COUSOIT D	1110
	None 96 80.0% 22.5 3.5 1 5 3 0 0 7 11 Yes Yes 0 96 91.5 80.5 110 81.5 70.5	None None 96 24 80.0% 20.0% 22.5 22.5 3.5 3.5 1 1 5 5 3 3 3 3 0 0 0 0 7 7 11 11 Yes Yes Yes Yes Yes 96 0 91.5 115.5 80.5 104.5 110 86 81.5 105.5 70.5 94.5	EBTL SBL EBL Lead Yes None None None 96 24 10 80.0% 20.0% 8.3% 22.5 22.5 9.5 3.5 3.5 3.5 1 1 1 5 5 5 3 3 3 0 0 0 0 0 0 7 7 11 11 11 Yes Yes Yes No Yes Yes Yes 0 96 0 10 91.5 115.5 5.5 80.5 104.5 5.5 110 86 110 81.5 105.5 115.5

HY PM Peak Build Baseline Synchro 10 Report

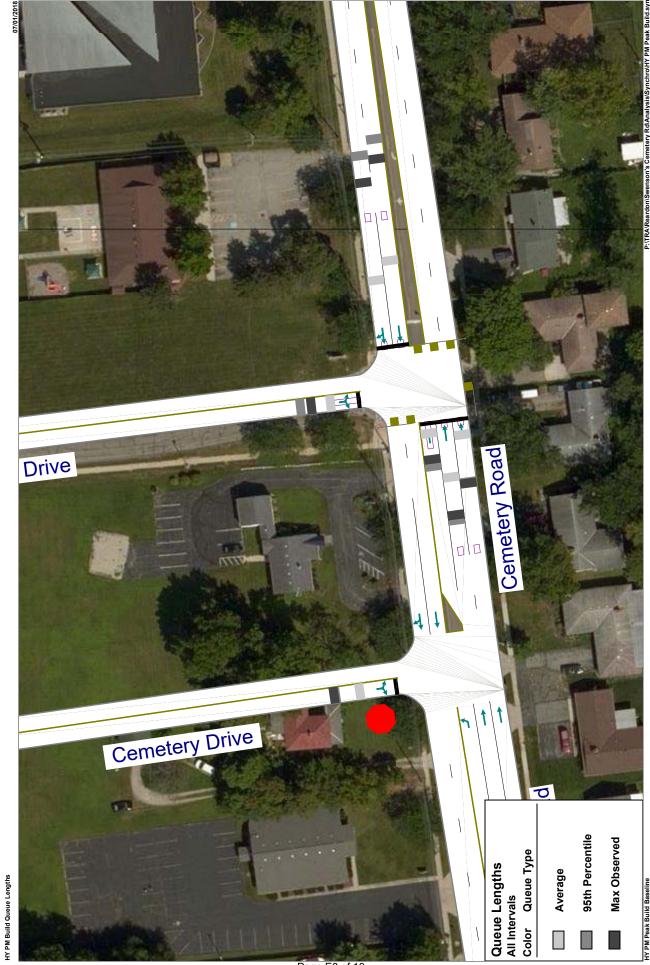
Intersection						
Int Delay, s/veh	0.1					
		EDT	WDT	WIDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ች	^	^		¥	,
Traffic Vol, veh/h	3	895	1411	1	2	6
Future Vol, veh/h	3	895	1411	1	2	6
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	95	95	81	81
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	3	973	1485	1	2	7
WWW. TOW	J	770	1 100	•		,
	/lajor1		Najor2		Minor2	
Conflicting Flow All	1486	0	-	0	1979	743
Stage 1	-	-	-	-	1486	-
Stage 2	-	-	-	-	493	-
Critical Hdwy	4.14	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	_	_	_	_	5.84	_
Follow-up Hdwy	2.22	-	_	_	3.52	3.32
Pot Cap-1 Maneuver	448	_	-	_	54	358
Stage 1	- 170	_	_	_	174	-
Stage 2	-	_		_	579	_
Platoon blocked, %	-	_	-		319	-
	440		-	-	ГЛ	250
Mov Cap-1 Maneuver	448	-	-	-	54	358
Mov Cap-2 Maneuver	-	-	-	-	54	-
Stage 1	-	-	-	-	173	-
Stage 2	-	-	-	-	579	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		30.9	
HCM LOS	U		U		D	
HOW EOS					<i>-</i>	
Minor Lane/Major Mvm	t	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		448	-	-	-	149
HCM Lane V/C Ratio		0.007	-	-	-	0.066
HCM Control Delay (s)		13.1	-	-	-	30.9
HCM Lane LOS		В	-	-	-	D
HCM 95th %tile Q(veh)		0	_	_	-	0.2
2001)						

HY PM Peak Build Baseline Synchro 10 Report

Intersection: 3: Cemetery Road & JW Reason Drive

Movement	EB	EB	EB	WB	WB	SB
Directions Served	L	Т	T	Т	TR	LR
Maximum Queue (ft)	39	118	104	159	131	88
Average Queue (ft)	12	42	17	64	37	33
95th Queue (ft)	38	99	58	135	95	66
Link Distance (ft)		155	155	608	608	548
Upstream Blk Time (%)		0	0			
Queuing Penalty (veh)		0	0			
Storage Bay Dist (ft)	125					
Storage Blk Time (%)		0				
Queuing Penalty (veh)		0				

Intersection: 5: Cemetery Road & Cemetery Drive


Movement	EB	SB
Directions Served	L	LR
Maximum Queue (ft)	31	31
Average Queue (ft)	2	7
95th Queue (ft)	15	28
Link Distance (ft)	239	324
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Network wide Queuing Penalty: 0

HY PM Peak Build SimTraffic Report
Page 1

Page E7 of 10

Page E8 of 10

Left Turn Lane Length Calculations

	Design Speed		mph
	Traffic Control		
1 2	Cycle Length		
	Cycles Per Hour		Error
	Turn Lane Volume		VPH
~	Advancing Traffic		VPH
l e	Left Turn Percentage		
l G	Location Type		
AM Peak (N/A)	Condition		
	Vehicles/Cycle		
2	Turn Lane Length		_
	Offset Width		
,	Approach Taper		
	Design Speed	40	mph
	Traffic Control	Unsignalized	
	Cycle Length	Unsignalized	
	Cycles Per Hour	60	Assume 60
a	Turn Lane Volume	3	VPH
PM Peal	Advancing Traffic	898	VPH
	Left Turn Percentage	0%	
	Location Type	Through Road	
	Condition	В	
	Vehicles/Cycle	1	
	Turn Lane Length	125	
		13	
	Offset Width	12	

Left Turn Lane Length Calculations

	Design Speed		mph
	Traffic Control		
1 2	Cycle Length		
	Cycles Per Hour		Error
	Turn Lane Volume		VPH
V	Advancing Traffic		VPH
l e	Left Turn Percentage		
l ë	Location Type		
AM Peak (N/A)	Condition		
	Vehicles/Cycle		
2	Turn Lane Length		#DIV/0!
	Offset Width		
,	Approach Taper		
	Design Speed	40	mph
	Traffic Control	Signalized - 3 Phase	
	Cycle Length	Known	
	Cycles Per Hour	30	Enter Cycles Per Hour
a	Turn Lane Volume	13	VPH
PM Peal	Advancing Traffic	897	VPH
	Left Turn Percentage	1%	
	Location Type	Intersection	
	Condition	B or C	
٥	Vehicles/Cycle	1	
Ь	Turn Lane Length	1 See Column to Right	165
Ь		-	165

